Skip to contents

All functions

calculate_accuracy()
Calculates accuracy values from prediction
calculate_auprc()
Calculate AUC from Precision-Recall Curve
calculate_auroc()
Calculate AUC from ROC Curve
calculate_confusion_values()
Calculate confusion values
calculate_f1()
Compute F1 Score
calculate_feature_importance_stacking()
Compute Weighted Feature Importance from Base Models and Meta-Learner for Stacking Models
calculate_mcc()
Compute Matthews Correlation Coefficient (MCC) Score
calculate_precision()
Calculate precision values
calculate_recall()
Calculate recall values
choose_base_models()
Choose Top Base Models for Stacking Based on Accuracy or AUC Scores
compute_boruta()
Compute Boruta algorithm
compute_custom_k_fold_CV()
Train and evaluate machine learning models on previously constructed k folds
compute_cv_AUC()
Compute Cross-Validated AUC Values for Machine Learning Models
compute_cv_accuracy()
Compute Cross-Validation Accuracy for ML Models
compute_features.ML()
Train and evaluate machine learning models with optional stacking and feature selection
compute_features.training.ML()
Train machine learning models with optional stacking and feature selection
compute_k_fold_CV()
Perform repeated stratified k-fold cross-validation for model training and tuning
compute_prediction()
Compute Prediction Metrics for a Trained Machine Learning Model
compute_variable.importance()
Compute variable importance using SHAP values
deconvolution
Deconvolution matrix
feature.selection.boruta()
Compute Feature Selection Using Repeated Boruta Algorithm
find.ML.models()
Extract ML models from a directory based on specific AUC score
get_curves()
Get performance curves
get_pooled_boxplots()
Plot Pooled AUROC and AUPRC Boxplots Across Multiple Folders
get_pooled_roc_curves()
Plot Pooled AUROC and AUPRC Performance Curves
get_sensitivity_specificity()
Calculate Sensitivity and Specificity Values
merge_boruta_results()
Merge Boruta Results
plot_shap_values()
Plot SHAP values
raw.counts
Raw counts
traitData
Clinical data