Skip to contents

All functions

aggregate_results()
Aggregate Nested Cross-Validation Results for Classification or Survival Tasks
calculate_accuracy()
Calculates accuracy values from prediction
calculate_auprc()
Calculate AUC from Precision-Recall Curve
calculate_auroc()
Calculate AUC from ROC Curve
calculate_confusion_values()
Calculate confusion values
calculate_f1()
Compute F1 Score
calculate_feature_importance_stacking()
Compute Weighted Feature Importance from Base Models and Meta-Learner for Stacking Models
calculate_mcc()
Compute Matthews Correlation Coefficient (MCC) Score
calculate_precision()
Calculate precision values
calculate_recall()
Calculate recall values
choose_base_models()
Choose Top Base Models for Stacking Based on Accuracy or AUC Scores
compute_boruta()
Compute Boruta algorithm
compute_custom_k_fold_CV()
Train and evaluate machine learning models on previously constructed k folds
compute_cv_AUC()
Compute Cross-Validated AUC Values for Machine Learning Models
compute_cv_CINDEX()
Summarize and Visualize C-index Results from Survival Model Cross-Validation
compute_cv_accuracy()
Compute Cross-Validation Accuracy for ML Models
compute_features.ML()
Train and evaluate machine learning models for classification or survival analysis
compute_features.training.ML()
Train machine learning or survival models with optional stacking and custom cross-validation
compute_k_fold_CV()
Perform repeated stratified k-fold cross-validation for model training and tuning
compute_k_fold_CV_survival()
Nested Cross-Validation for Survival Models with Optional Custom Fold Construction
compute_ml_survival()
Train and Evaluate a Survival Model
compute_prediction()
Compute Prediction Metrics for a Trained Machine Learning Model
compute_variable.importance()
Compute variable importance using SHAP values
deconvolution
Deconvolution matrix
feature.selection.boruta()
Compute Feature Selection Using Repeated Boruta Algorithm
find.ML.models()
Extract ML models from a directory based on specific AUC score
get_curves()
Get performance curves
get_default_hyperparams()
Get default hyperparameter grids for supported survival models
get_pooled_boxplots()
Plot Pooled AUROC and AUPRC Boxplots Across Multiple Folders
get_pooled_roc_curves()
Plot Pooled AUROC and AUPRC Performance Curves
get_sensitivity_specificity()
Calculate Sensitivity and Specificity Values
merge_boruta_results()
Merge Boruta Results
plot_shap_values()
Plot SHAP values
plot_survival_performance()
Plot and save survival performance of a model on test data
predict_and_evaluate_survival()
Predict and Evaluate Survival Model Performance
preprocess_features()
Preprocess Features for Machine Learning
raw.counts
Raw counts
traitData
Clinical data
wrapper_train_best_hyperparams_classification()
Train model with optimized hyperparameters for classification tasks
wrapper_train_best_hyperparams_survival()
Train the Best Survival Model Using Optimized Hyperparameters