
Package index
-
calculate_accuracy()
- Calculates accuracy values from prediction
-
calculate_auprc()
- Calculate AUC from Precision-Recall Curve
-
calculate_auroc()
- Calculate AUC from ROC Curve
-
calculate_confusion_values()
- Calculate confusion values
-
calculate_f1()
- Compute F1 Score
-
calculate_feature_importance_stacking()
- Compute Weighted Feature Importance from Base Models and Meta-Learner for Stacking Models
-
calculate_mcc()
- Compute Matthews Correlation Coefficient (MCC) Score
-
calculate_precision()
- Calculate precision values
-
calculate_recall()
- Calculate recall values
-
choose_base_models()
- Choose Top Base Models for Stacking Based on Accuracy or AUC Scores
-
compute_boruta()
- Compute Boruta algorithm
-
compute_custom_k_fold_CV()
- Train and evaluate machine learning models on previously constructed k folds
-
compute_cv_AUC()
- Compute Cross-Validated AUC Values for Machine Learning Models
-
compute_cv_accuracy()
- Compute Cross-Validation Accuracy for ML Models
-
compute_features.ML()
- Train and evaluate machine learning models with optional stacking and feature selection
-
compute_features.training.ML()
- Train machine learning models with optional stacking and feature selection
-
compute_k_fold_CV()
- Perform repeated stratified k-fold cross-validation for model training and tuning
-
compute_prediction()
- Compute Prediction Metrics for a Trained Machine Learning Model
-
compute_variable.importance()
- Compute variable importance using SHAP values
-
deconvolution
- Deconvolution matrix
-
feature.selection.boruta()
- Compute Feature Selection Using Repeated Boruta Algorithm
-
find.ML.models()
- Extract ML models from a directory based on specific AUC score
-
get_curves()
- Get performance curves
-
get_pooled_boxplots()
- Plot Pooled AUROC and AUPRC Boxplots Across Multiple Folders
-
get_pooled_roc_curves()
- Plot Pooled AUROC and AUPRC Performance Curves
-
get_sensitivity_specificity()
- Calculate Sensitivity and Specificity Values
-
merge_boruta_results()
- Merge Boruta Results
-
plot_shap_values()
- Plot SHAP values
-
raw.counts
- Raw counts
-
traitData
- Clinical data